Typology
Ph.D Course
Access methods
Restricted access
Duration
3
Location
Varese
Language
Italian
Structure
DIPARTIMENTO DI SCIENZE TEORICHE E APPLICATE

Course description

Educational Objectives and Research Activities
The goal of this program is to prepare students with a sound cultural background, providing them with a high level of flexibility, open minded and in-depth cutting edge competences in specific fields. These students will be able to carry out, manage and disseminate independent theoretical and/or applied research activities at an international level. They will be able to design mathematical models aimed at defining and building complex Information Technology (IT) systems, develop innovative IT applications and transfer their knowledge to the private sector, thereby also contributing to strengthening the role played by Italian industrial organizations in the global economic scenario. Our Ph.D. program stresses an interdisciplinary approach that nowadays characterizes most of the advances researches worldwide.

Organization
The Ph.D. program in Computer Science and Computational Mathematics offered by Università degli Studi dell’Insubria is jointly administered by Dipartimento di Scienze Teoriche ed Applicate (Department of Theoretical and Applied Sciences) and by Dipartimento di Scienze ed Alta Tecnologia (Department of Sciences and High Technology). The program is aimed at students interested in obtaining research positions in universities as well as in government or industrial research institutions. Normally, the Ph.D. program lasts three years. There are currently 9 available positions: 7 of them come with a fellowship granted by our university, the remaining two have no associated grant. Additional grants might come from research projects supported by funding agencies and/or private companies. The program is articulated into two phases. The first 18 months are mainly devoted to attending courses and seminars at both Università degli Studi dell’Insubria or elsewhere (other universities, national or international PhD schools, etc.). In this respect, students have a significant amount of flexibility in building up their own study plan; attending courses, at other Italian and foreign universities, is highly encouraged. The second 18 months are mainly devoted to independent research activity under the guidance of a supervisor. The program also financially encourages students and supervisors to plan towards longer term research visits to international research venues. The main outcome of a Ph.D. course of study is a Ph.D. dissertation collecting original research work carried out by the student. This will typically take the form of publications in international journals and/or proceedings of international research conferences. The dissertation will be defended in front of a defense jury made up of external experts.

Scientific areas: 01 – Mathematics and Computer Science, 09 – Industrial and information Engineering, 13 – Economics and Statistics
Thematic areas: INF/01, ING-INF/05, MAT/01, MAT/03, MAT/05, MAT/07, MAT/08, SECS-S/01
Coordinator: Carminati Barbara
Academic Year: 2024/2025
Ph.D. Cycle: XL cycle

What you need to know

All applicants to our Ph.D. program must have completed a five-year university curriculum (for instance, a three-year Bachelor plus a two-year Master). They are expected to demonstrate a sound background in Computer Science and/or Computational Mathematics, fluency in English and a strong motivation for research. Applicants are ranked according to their Curriculum Vitae (CV) and the result of an oral examination usually done in September. The public oral examination may also be carried out through video-conferencing tools. The 7 top ranked applicants qualify for a grant as well as a tuition fee waiver. The remaining applicants may either be admitted with no grant or not admitted at all.

Enrollment

This PhD is established for the XL cycle.

The following is expected for Session I:
position: 9
with Scholarships: 7
without scholarship: 2

Please see also: Italian announcement
 

Class attendance

PhD students have to successfully attend and pass exams of at least 4 PhD courses/ training activity during the 3 years program. These can be selected among those provided by Università degli Studi dell’Insubria as well as by other organizations (other universities, national or international PhD schools, etc.)

Studying

Annualy the PhD board propose new training activites that will be supported by Università degli Studi dell’Insubria. The course description are in Italian but the course will be in English.

I anno

Etica dell'IA, IA spiegabile e ruolo del processo decisionale umano
Il corso si propone di definire ed esplorare le questioni etiche inerenti all'uso dell'intelligenza
artificiale (IA), di fornire modelli di explanability di IA e di combinarli con modelli e definizioni di
processi decisionali. Il corso si occupa di una serie di questioni e argomenti attuali attraverso
l'applicazione di importanti teorie morali. Questo corso si propone di definire ed esplorare le
questioni etiche inerenti all'uso dell'intelligenza artificiale (IA), di fornire modelli di explanability di
IA e di combinarli con modelli e definizioni di processi decisionali. Gli argomenti trattati includono,
ad esempio, la nozione di responsabilità, le questioni etiche nella progettazione e nella gestione
dell'IA, gli aspetti etici dei rischi tecnici, la distribuzione della responsabilità nell'ingegneria, nel
design e nell'architettura e il rapporto tra sostenibilità, etica e tecnologia.
PDE su grafi metrici: teoria spettrale degli operatori differenziali, propagazione delle onde e
applicazioni
Il corso fornisce un'introduzione alla teoria delle equazioni differenziali parziali (PDE) su grafi
metrici ed è suddiviso in quattro parti. La prima parte introduce le definizioni di base e la nozione
di operatore differenziale selfadjoint su un grafo metrico. Include una descrizione delle varie
realizzazioni di operatori selfadjoint del Laplaciano e una rassegna dei principali risultati dellateoria spettrale. La seconda parte si concentra sull'analisi della dinamica lineare delle onde su grafi
metrici, con particolare attenzione all'equazione lineare di Schrödinger. La terza parte del corso si
concentra sull'equazione di Schrödinger non lineare, in particolare sull'analisi delle soluzioni
stazionarie e della loro stabilità. Infine, l'ultima parte del corso esamina alcuni risultati sul
problema della giustificazione dei modelli di grafi metrici come approssimazioni per la dinamica
delle narrow tube network.

PDE su grafi metrici: teoria spettrale degli operatori differenziali, propagazione delle onde e
applicazioni
Il corso fornisce un'introduzione alla teoria delle equazioni differenziali parziali (PDE) su grafi
metrici ed è suddiviso in quattro parti. La prima parte introduce le definizioni di base e la nozione
di operatore differenziale selfadjoint su un grafo metrico. Include una descrizione delle varie
realizzazioni di operatori selfadjoint del Laplaciano e una rassegna dei principali risultati dellateoria spettrale. La seconda parte si concentra sull'analisi della dinamica lineare delle onde su grafi
metrici, con particolare attenzione all'equazione lineare di Schrödinger. La terza parte del corso si
concentra sull'equazione di Schrödinger non lineare, in particolare sull'analisi delle soluzioni
stazionarie e della loro stabilità. Infine, l'ultima parte del corso esamina alcuni risultati sul
problema della giustificazione dei modelli di grafi metrici come approssimazioni per la dinamica
delle narrow tube network.

II anno

Flipping strategy for large structured linear systems: spectral analysis, algorithmic aspects, and
applications
Consider a Toeplitz matrix T_n that is a matrix whose coefficient are constant along the diagonals
and assume that T_n is real and nonsymmetric. Even assuming that the coefficients stem as
Fourier coefficients of a given smooth function f, the spectral features of T_n=T_n(f) are very
complicate. The latter property makes notable solvers (as GMRES) for the related non-symmetric
linear systems very difficult to analyze. One decade ago Pestana and Whathen [1] proposed
solving a real non-symmetric Toeplitz linear system T_n(f)x = b by (preconditioned) MINRES
applied to the symmetrized linear system H_n(f)x = Y_n b, H_n(f)=Y_n T_n(f) has some advantages
over solving the original system through either direct methods or iterative methods for non-
symmetric Toeplitz matrices, Y_n being the flipping matrix (or anti-diagonal matrix). The course
focuses on the theoretical and algorithmic aspects of the flipping strategy, by testing it on
notewhorty applications such as approximated evolutionary differential equations and deblurring
problems in imaging.

An introduction to knowledge graphs and ontologies
This course proposes an introduction to knowledge graphs, which have recently garnered a
significant amount of attention from both academia and industry. Knowledge graphs can assume
different data models for organizing world’s knowledge and integrating information extracted from
multiple data sources. Graphs have also started to gain a pivotal role in representing information
extracted from AI systems at different levels. The goal of this course is to provide an overview on
different knowledge graph data models, focusing then on ontologies as complex knowledge graphs
combining a taxonomy and data. The course combines a theoretical background with a hands-on
approach, aimed at offering students the possibility to acquire the basics of RDF and knowledge
graphs engineering.

Student services

For information

Address: c/o Dipartimento di Scienze Teoriche e Applicate – DISTA 

Università degli Studi dell’Insubria

Via Dunant, 3 – 21100 Varese – Italy

Coordinator: Prof Barbara Carminati

Contacts: Tel. +39 (0) 332398951

Email: barbara.carminati@uninsubria.it