HUMAN PHYSIOLOGY 2

Degree course: 
Corso di Long single cycle degree (6 years) in MEDICINE AND SURGERY
Academic year when starting the degree: 
2017/2018
Year: 
2
Academic year in which the course will be held: 
2018/2019
Course type: 
Basic compulsory subjects
Credits: 
6
Period: 
Second semester
Standard lectures hours: 
50
Detail of lecture’s hours: 
Lesson (50 hours)
Requirements: 

To be admitted to the final exam of Human Physiology it is necessary to possess a positive evaluation of the exams of Human Anatomy and of Biochemistry

Final Examination: 
Orale

The final is based on the syllabi of Fisiologia Umana 1 and 2. The final exam consists of a written exam made of 40 multiple choice questions. Students that will scores higher than 18/30 will be subjected to an oral exam. The final mark will be given on the basis of the oral exam alone.

Assessment: 
Voto Finale

Course objective and learning target
The objective of the Course of Human Physiology is to provide to the Students all information needed to understand, from the biophysical and quantitative standpoint, the mechanisms of functioning of body organs and systems and their control performed by the central and autonomic nervous system and by the endocrine system.

Detailed program
Muscle and locomotion. Isometric, isotonic and iso-velocity contraction. Force-length, force-velocity and dynamic force-velocity diagrams.
Heart. Cardiac pace-maker. Electrocardiogram. Control of cardiac function. Cardiac mechanics. Valves function. Ventricular pressure and volume during cardiac cycle. Cardiac stroke and cardiac output. Work output, cardiac efficiency and metabolism.
Distribution of blood volume. Velocity, cross section and pressure in the circulatory districts. Mechanical features of blood vessels. Laplace and Bernoully laws. Poiseuille law. Laminar and turbulent flow. Arterial and venous pulse pressure. Pressure distribution in the systemic and pulmonary circulation. Fluid and solute exchanges between microvasculature and interstitial space. Diffusion and convection. Control of interstitial volume and lymph formation. Oedema. Control of cardiovascualr function. Pulmonary and coronary circulation.
Respiratory system. Air composition and respiratory gasses. Spirometry, static lung volumes. Pulmonary and alveolar volume and flow. Static. Lung, chest and respiratory system pressure-volume curves. Intrapleural pressure and pneumothorax. Dynamics Mechanical work of respiration. Respiratory gas exchanges. O2 consumption and CO2. production. Respiratory ratio. Alveolar gas equation. Alveolo-capillary respiratory gas diffusion. O2 and CO2 transport in blood transport in blood. Ventilation-perfusion ratio. Artero-venous shunt, hypoxia. Nervous and chemical control of respiratory function.
Renal system. Glomerular filtration: composition of glomerular filtrate. Renal blood flow and filtration fraction. Glomerular auto regulation. Renal clearance. Proximal tubule Absorption of water, Na+, Cl-, bicarbonates, aminoacids, urea. Secretion of H+ and organic substances. Henle loop. Counter current mechanism. Osmolarity in tubular and extracellular fluid. Vasa recta. Distal convolute and collecting tubules. Absorption of water and Na+; excretion of H+, K+. Aldosterone and vasopressine. Regulation of volume and osmoticity in extracellular body fluids. Urine volume, pH and composition.
Acid-base equilibrium. Physiological buffer solutions. H+ production and its buffering. Respiratory and metabolic acidosis and alkalosis. Control of pH by renal and respiratory correction.
Metabolism. Energetic fuel: anaerobic and aerobic pathways. Energy available in food. Oxygen debt. Basal, rest ad exercise metabolism. O2 consumption.
Thermoregulation. Thermal equilibrium. Physiological mechanisms of heat production and dispersion. Nervous and endocrine control of heat production and dispersion.
Digestive system. General features of the digestive tube. Peristaltic movements. Salivary and gastric secretion and their nervous control. Bile secretion and functions. Composition and functions of pancreatic and intestinal secretion. Endocrine control of secretions. Digestion and absorption of carbohydrates, proteins, lipids, ions (Fe++, Ca++, etc.), vitamins, drugs and water.
Endocrine system. Mechanisms of hormone release and action. Pituitary gland. Anterior lobe. Hypotalamic neurosecretion and portal blood vessels. Releasing (RH) and inhibiting hormones (IH). Somatotropin, thyreotropin, corticotropin, gonadotropin, prolactine. Intermediate lobe: melatonine. Posterior lobe: oxytocine and ADH. Adrenal glands. Medulla: catecholamines. Cortical: glucocorticoids, mineralcorticoids, their function and regulation. Thyroid Function and secretion of thyroid hormones. Paratyroids. Metabolisms and function of calcium and fosphate ions. Vitamin D. Endocrine pancreas. Effect of insulin and glucagone on glucose metabolism. Gonads. Endocrine aspects of male and female sexual organs. Gastrointestinal hormones.

Books
AA.VV. – FISIOLOGIA UMANA – a cura di F.Grassi, D.Negrini, C.A. Porro - Poletto Editore, Milano
AA.VV. – FISIOLOGIA MEDICA - a cura di F. Conti - Casa Editrice Edi-Ermes, Milano
Guyton & Hall – FISIOLOGIA MEDICA – Elsevier-Masson
Monografie:
Kandel, Schwartz – Principles of neural science – Elsevier
AA.VV. - Neuroscienze - a cura di D.Purves, Zanichelli
J.B.West – Respiratory Physiology

Final exam
After completing the Course of Physiology 1 and Physiology 2, the student will give a multiple choice exam, performed through a digital support (PC), consisting in 40 questions on the entire Physiology 1 and Physiology 2 courses programs'. If the student attains a score greater than 18/30, the first part of the exam is passed and is follwed by an oral exam consisting of 4 open questions on the entire Physiology 1 and Physiology 2 courses programs'.

Class Lectures

-

Professors